Mouse models of radiation-induced glioblastoma
نویسندگان
چکیده
Glioblastomas (GBM) are lethal brain tumors that can be triggered by exposure to ionizing radiation (IR), even at low doses from CT scans [1]. High doses of IR are also used to treat GBM, but the irradiated tumors inevitably recur. This raises the possibility that genomic changes induced by radiation may contribute not only to glioma initiation, but also to tumor recurrence. Thus, there is a compelling need for experimental model systems that recapitulate the process of radiation-induced gliomagenesis. Such models could not only help predict GBM-development risks from radiation exposure, but also help identify genetic alterations defining radiation-induced GBM, thereby facilitating the development of rational therapies for treating these recalcitrant tumors. Our study published in the journal Oncogene employed a systematic approach to develop sensitive mouse models that can be used to study radiation-induced gliomagenesis [2]. Ink4a, Ink4b and Arf are key tumor suppressor genes that are deleted in a majority of GBMs [3]. We utilized transgenic mice with brain-restricted deletions of these tumor suppressors, individually and in combination, and examined their susceptibility to IR-induced GBM development. The most deleterious lesion inflicted by IR is the DNA double-strand break (DSB). We have shown previously that accelerated ions (particle radiation) induce complex DSBs that are refractory to repair unlike the simple breaks induced by X-rays (electromagnetic radiation) which are repaired to completion [4]. Therefore, we intra-cranially irradiated these transgenic mice with either X-rays or accelerated Fe ions to understand the process of radiation-induced gliomagenesis, and how this may be influenced by DNA damage complexity. We found that these mice did not develop gliomas spontaneously, but were prone to GBM development after exposure to a single, moderate dose of radiation. Remarkably, we found that Fe ions were at least four-fold more effective than X-rays in inducing these tumors, thereby confirming that complex DSBs triggered by accelerated ions are more harmful than simpler breaks induced by X-rays. This finding has important implications as the use of particle radiation (such as protons and carbon ions) for cancer therapy is steadily increasing. Our work indicates that particle radiation could indeed turn out to be more effective than X-rays for tumor control, but this also raises the specter of increased likelihood of secondary cancers triggered by such radiation. Interestingly, while wild type mice did not develop gliomas upon radiation exposure, loss of Ink4a and Arf was sufficient to render these mice susceptible to IR-induced gliomas; …
منابع مشابه
Protective effects of famotidine and vitamin C against radiation induced cellular damage in mouse spermatogenesis process
Background: Radioprotective effect of famotidine was previously shown on radiation induced micronuclei and chromosomal aberrations in human peripheral lymphocytes and mouse bone marrow cells however, its radioprotective property has never been studied in mouse spermatogenesis. It was also shown that vitamin C as an antioxidant also exert its radioprotective effect on many biological s...
متن کاملAutotaxin Inhibition with PF-8380 Enhances the Radiosensitivity of Human and Murine Glioblastoma Cell Lines
PURPOSE Glioblastoma multiforme (GBM) is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo, and radiotherapy. Autotaxin (ATX) is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosen...
متن کاملModulation of radiation induced changes in nucleic acid content of liver of Swiss albino mouse by Tinospora cordifolia (Miers)
Background: Radiotherapy is the main modality of cancer treatment. There are many chemical radioprotectors which unfortunately have lethal or toxic effect. Therefore the search is on to find out natural plant based radioprotectors. A well known medicinal plant,which is more acceptable to the body, Tinospora cordifolia, was tested in animal tissues against gamma radiations. Radioprotectiv...
متن کاملModulation of radiation and cadmium induced biochemical changes in mouse kidney by Emblica officinalis Linn
Background: Protective effect of Emblica against radiation and cadmium induced biochemical changes in mouse kidney has been studied. Materials and Methods: Adult male mice were divided into seven groups: I (shamirradiated), II (cadmium chloride), III (irradiated with 2 Gy gamma rays), IV (radiation and cadmium chloride), V (Cadmium chloride and Emblica), VI (radiation and Emblica), VII...
متن کاملProtein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma.
Protein phosphatase 2A (PP2A) is a tumor suppressor whose function is lost in many cancers. An emerging, though counterintuitive, therapeutic approach is inhibition of PP2A to drive damaged cells through the cell cycle, sensitizing them to radiotherapy. We investigated the effects of PP2A inhibition on U251 glioblastoma cells following radiation treatment in vitro and in a xenograft mouse model...
متن کاملEvaluation of combination effects of radiotherapy, hyperthermia and curcumin on glioma spheroids
Glioblastoma is most common and most aggressive cancer of brain. for treatment surgery is first selection and radiation therapy then chemotherapy. The median survival of Patients with GBM is less than a year after diagnosis. Glioblastoma is basically resistant to common cancer treatments. today to improve the response of patients to treatment, a number of strategies such as the use of radiation...
متن کامل